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INTRODUCTION 

 
 

   Longitudinal data are often collected in epidemiological studies, 

especially to study the evolution of biomedical markers. Thus, linear 

mixed models Laird Ware (1982). When several markers are 

measured repeatedly, longitudinal multivariate models could be used 

like in econometrics. However, this extension of univariate models is 

rarely used in biomedicine although it could be useful to study the 

joint evolution of biomarkers . For instance, in HIV infection, several 

markers are available to measure the quantity  of virus (plasma viral 

load noted HIV RNA), the status of immune system (CD4+ T 

lymphocytes which are a specific target of the virus CD8-T 

lymphocytes) Or the inflammation process ( 2  microglobuline).  

   These markers are associated as the infection measure by HIV 

RNA induces inflammation and the destruction of immune cells. 

Several authors have developed  methods to fit evolution of CD4 and 

CD8 cells Shah et al (1997) or CD4 and 2  microglobuline Sy et al 

(1997) used the Fisher scoring method to fit a bivariate linear random 

effects model including on Integrated Orstein-Uhlenbeck process 

(IOU) . IOU is a stochastic process that includes Brownian motion as 

special limiting case. 

   In this paper, we propose some tricks to use SAS MIXED 

procedure in order to fit multivariate  linear mixed models to 

multivariate longitudinal Gaussian data. SAS MIXED procedure uses 

Newton-Raphson algorithm known to be faster than the EM 

algorithm Lindstrom et al (1988). 

 

 

 

 

 

 In sections 2 and 3, we present bivariate linear mixed models used in 

SAS to fit these models. In section 4, we apply these models to study 

the joint evolution of HIV RNA and CD4+ T lymphocytes in a cohort 

of HIV-1 infected patients (APROCO) treated with highly active 

antiretroviral treatment. 

MODEL FOR BIVARIATE LONGITUDINAL GAUSSIAN 
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ABSTRACT 
 

Bivariate linear mixed  models are useful when analyzing longitudinal data of two associated markers. In this paper, we present a bivariate 

linear mixed model including random effects or first-order auto-regressive process and independent measurement error for both markers. 

We fitted these models using SAS Proc MIXED. 

 

*
Corresponding author 

Manuscript received by the Editor January 14, 2008; revised manuscript accepted November 12, 2008. 
1
Department of Mathematics /Statistics & Computer Science, University of Calabar, Calabar, Nigeria 

2
Department of Mathematic /Statistic Cross River State University of Technology, Calabar 

© 2009 International Journal of Natural and Applied Sciences (IJNAS). All rights reserved.  

 
 
 

 

112 

 



Data modeling using bivariate linear 
 

st

w

k

i etsR k





 2),(  and nI  is a ii nn   identity matrix. To 

take into account correlation between both markers, one could use the 

following bivariate linear mixed model  
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realization of a bivariate first order auto-regressive process 
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measurement errors. The covariance matrix of measurement errors is 

defined by ni I  and 
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Models Using Proc MIXED SAS 

 Random Effects 

   Multivariate random effects models can be fitted using the 

statement random and an inductor variable for each marker to define  

., k
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i ZandXY To add an independent error for each reponse 

variable in a multivariate random effect model, one must use the 

repeated statement with the option )(VARGROUP  where 

VAR is a binary variable indicating the the response variable  

concerned 
1)0( YforVAR   and 

21YVAR  ). This option 

allows estimation of heterogeneous covariance structure, i.e. the 

variances of the measurement errors are different for each response 

variable. 

 First Order Auto-regressive Process 

   In the repeated statement SAS provides the possibility to fit 

bivariate models using a Kronecker product notation Galeckit(1994) . 

For instance, in the bivariate case with 3 repeated measures, the 

option  type=UN@AR(1)  in the statement repeated assumes that the 

covariance matrix has the  following structure : 
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Compared with the general bivariate auto-regressive process defined 

in the previous section, this structure  has two important limitations. 

First, the covariance structure is a first order  auto-regressive process 

for discrete data and assumes the measures are equally spaced for all 

subjects and for the two markers. In the univariate case, a continuous 

time AR(1) model, which allows non equally spaced measures, may 

be fitted using the structure  SP(POW) but this structure is not 

available for multivariate models. The second limitation is that SAS 

program allows to estimate only one correlation parameter )(  for 

the “bivariate process” rather than a matrix B. Thus, using this 

formulation, one assumes that the intra-marker correlation is the same 

for the two markers, i.e. 
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Moreover, one assumes that inter-markercorrelation is proportional to 

the inter-marker correlation is proportional to the inter-marker 

correlation, i.e. 
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To add sn independent measurement error for both markers, one must 

use the option LOAL(EXP<effect>) which produces exponential local 

effects, <effects>=VAR  being still the indicator variable of response 

variable. These local effects have the form  

 )exp(2   Udiag  where U is a full–rank design matrix PROC 

MIXED constructs U in terms of 1s and -1s for a classification effect 

and estimates    

 

APPLICATION 

    A total of 1,281 HIV-1  infected patients  were enrolled from May 

1997 to June 1999 at the initiation of their first highly active 

antiretroviral therapy containing a protease inhibitor. Standardized 

clinical and biological data including CD4+ cell counts 

measurements and plasma HIV RNA quantification were collected at 

baseline )( 0M , one month later ( 1M ) and every  4 months 

)( 244 MM    thereafter. In order to ensure sufficient available 

information, only a sub-sample of patients having both plasma HIV 

RNAM and CD4+ cell counts  measurements at 0M  and at least 

two measurements thereafter were included in the analyses. The first 

measurement after baseline (at one month) was deleted to provide a 

data with equally spaced measures. Follow-up data were included 

until the 24th month, thus patients had a maximum of 7 measures. 

Available information at each study time and description of the 

evolution of both markers are presented in Table 1 and Fig.1. 

Modeling   

To ensure  normality and  homoskedasticity of residuals   

distribution, variable response was the change in value of marker at 

time t since the initial visit, i.e. 

)0(log)(log)( 1010

1 HIVRNAtHIVRNAtYi  and 

)0()()( 44

2 CDtCDtYi  .                                                 (8) 

Fixed effects included a change of slope intensity at time 4 months as 

suggested in fig.1. Note that we did not include intercept because 
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We compare 4 models providing two forms of covariance structure 

(random effects or auto-regressive process) in two formulations 

(univariate or bivariate). Univariate and bivariate random effect 

models were compared using likelihood ratiotest as both models were 

nested . The bivariate model had only four covariance parameters in 

addition. Comparison of random effects versus auto-regressive 

process were performed using AIC  critrria Akaike(1974). A 

general model including random slopes and a bivariate first order 

autoregressive process did not converge as reported in univariatew 

cases by others (see Lesaffre et al (1999) for example). The model 

including two random slopes and a measurement error for each 

marker was  
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The model including an auto-regressive process and a measurement 

error was  
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Fig.1. Mean Change in Observed HIV RNA and CD4+ Cell Count (95% Confidence Interval) after Initiation of an  

Antiretroviral Treatment Containing a Protease Inhibitor 

 

Table 1. CD4 cell count and HIV RNA during follow-up  

                 Change in CD4 cell count/
3mm                                                                                   Change in 10log  copies/ml HIV RNA    

        From Baseline                                                                                                                                 From Baseline 

 N mean SD N mean SD 
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20 

24 
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192 
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919 

894 
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703 

530 

-1.95 
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-2.04 

-2.03 
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RESULTS 

   The  bivariate random effects model was significantly better than 

two separate univariate random effects models 

 (-25194 vs -2525307, likelihood ratio = 226 with 4 degrees of 

freedom, ,10 4p (Table 2) showing a strong association 

between the two markers. The bivariate random effect model allows 

to estimate the correlation matrix between individual slopes for each 

marker . In this correlation matrix, every element was significantly  

(p < 0.05) different from 1 (Table 3) . Briefly, the highest correlations 

were between the slopes of the two markers at the same period; 

 
  monthsafterand

monthsbefore

RNAHIVCD
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460.0,
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2
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1
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
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These results were expected because of biological relationship 

between the two markers. Moreover, the second slope of CD4 cell 

count was highly correlated to the first slope of the same marker 

  37.0, 4

2

4

1 CDCD   The bivariate model including a 

bivariate auto-regressive process was better than the bivariate random 

effects model despite the restrictive assumption that the two intra-

marker correlations are equal  .5064650386 vsAIC Output 

obtained with the model including a first order auto-regressive 

process provide estimations of 195,54.1 22
21 

ww
  

And 00.721 
ww

  significantly  different from 0 (wald test , 

410p ). This last result underlines the relationship between the 

two markers. The parameter 91.0
42.3

11.3
  is the correlation 

between two consecutive measures of CD4 cell count or  HIV RNA . 

Variances of measurement error are calculated as 

  00.7742,3 11.32
1  e


  and 15.042.3 11.32
2  e


 . 

Thus, the relationship between the two markers were underlined by 

the correlation between the markers at each period and the 

improvement of likelihood of the bivariate model compared to two 

univariate models. Bivariate random effect model offers a direct  

interpretation of the relationship between the markers without 

assumption on the dependence of one marker in relation to the other. 

 

CONCLUSION 

   Bivariate models are useful for longitudinal data in biomedical 

research and can be computed using standard statistical package like 

the SAS system. Moreover, the efficiency of the procedure MIXED, 

which allows quick convergence, should be underlined. However, 

there are some limitations inherent in the identical intra-marker 

correlations or the assumption of constant period between two 

measurement for the first order auto-regressive covariance structure 

implemented in the SAS system.Finally , although the number of 

parameters would dramatically increase, particularly in the case of 

multivariate random effect model, bivariate models are easily  

extendable to multivariate modles with more than two dependent 

variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

116 



 

 

 

 

 

 

   

Table 2. Likelihood of models according to the type of  covariance matrix         

 Log Likelihood No. of parameters AIC 

Univariate model with two random slopes 

Bivariate model with two random slopes 

Univariate model AR(1) 

Bivariate model with AR(1) 

-25307 

-25194 

-25313 

-25183 

12 

16 

10 

10 

50638 

50420 

50646 

50386 

AIC = (-2log likelihood)+2(No. of parameter) AR(1) : First order auto-regressive process 

  

 

 

Table 3. Estimated correlation matrix of the bivariate model including two random slopes 
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